
SuperGlue: Standardizing Glue Components for
HPC Workflows

Jay Lofstead∗, Alexis Champsaur†, Jai Dayal†, Matthew Wolf†, Greg Eisenhauer†
∗Sandia National Laboratories †School of Computer Science, Georgia Institute of Technology

I. INTRODUCTION

Existing workflow engines, such as Kepler [2] and DAG-
Man [3], offer flexible ways to assemble components with rich
functionality to manage the control flow. What they both lack
is a way to easily deploy and manage the glue code required
to connect the various components. One example illustrat-
ing the complexities comes from the Oak Ridge Leadership
Computing Facility (OLCF). Kepler was used for several
workflows for the fusion simulation users. While the initial
goal was that an internal, expert resource would create the
workflow, including glue components, it should be able to be
maintained easily by the application scientists. Unfortunately,
the expert was required regularly as the configuration evolved
and scaled. The complexities of making and maintaining the
glue components as the output shifted and managing the
deployment was too high. Falling back to Python scripts
managed by the application scientist proved easier and faster to
maintain. While this approach using the parallel file system to
stage intermediate data was sufficient, it is quickly becoming
infeasible. The IO overhead for using the parallel file system is
exceeding acceptable runtime percentages forcing a reduction
in output and making scientific insights more difficult to
discover.

To address the performance mismatch, Integrated Appli-
cation Workflows (IAWs) are being developed. The easiest
way to think of these IAWs is the Unix/Linux shell pipe
operator to connect commands. The shell connects stdout of
one program to stdin of the next with the assumption that
each component in the chain can operate in this mode. For
tasks at this scale, this approach works well. For the scientific
workflows we are targeting, we have processes spread across
potentially 10,000s of nodes connected to other components
also running on multiple nodes.

Several efforts to work through some of the issues related
to IAWs have been investigated such as Catalyst, Libsim,
Glean, FlexPath, Bredala, and PreDatA. One key observation,
however, is that there is a lack of portability to the resulting
implementations; they require a great deal of tuning and/or
runtime placement control to make them function as desired.

This poster describes our work on SuperGlue, a set of
generic, reusable components for composing scientific work-
flows. These are distributed data analysis and manipulation
tools that can be chained together to form a variety of real-time
workflows providing analytical results during the execution of
the primary scientific code. Unlike existing components used

in IAWs, SuperGlue components do not have a fixed data
type. This one change enables using these components on
completely different kinds of simulations that share nothing
in their output format. Key to making this work is using
a typed transport mechanism between different components.
Many options exist for these transports and the particular
mechanism selected is not critical.

II. WORKFLOWS

We designed and implemented two realistic real-time work-
flows based on scientific codes having large user bases: the
LAMMPS Newtonian particle simulator [4] and GTCP, a
particle-in-cell Tokamak simulator [1]. While both of these
workflows eventually turn the simulation data into histograms
of certain quantities of interest, how they arrive at their final
result varies significantly. Creating similar types of results, and
this using some of the same components but in significantly
different ways, has allowed us to gain important insight into
how best to design glue components that can be used in a
wide variety of workflows.

In typical scientific workflows today, custom glue code
is written for selecting relevant data and writing it. Then,
potentially additional custom glue code will fix the histogram
calculation into something that can be rendered or saved as
desired. In this work, we demonstrate general, reusable com-
ponents capable of handling all three intermediate operations.

III. DESIGN

In this work, we offer some insight in the design of
generic data manipulation and analysis components from our
implementation of two workflows. These workflows are driven
by two different scientific codes, yet they share some of the
same components. We present our insights.

A. Insights: Overview
By evaluating the presented workflows and considering

other workflows with which the authors are familiar, four
particular insights are revealed.

1) To allow for the greatest variety of workflows, data
manipulation primitives and data analysis components should
be packaged in similar ways – that is, regardless of their
individual complexity, the pieces that make up these workflows
should export compatible interfaces as much as possible.

2) The ability to handle multi-dimensional data, along with
the consistent labeling of dimensions and quantities as meta-
data, allows for components that are highly adaptable and
simple to use.



3) While different types of components understand varying
levels of semantics, maintaining a high level of semantics
(i.e., labeling quantities and dimensions as much as possible)
early on and when passing through components that do not
necessarily require all of these labels allows for the most
functionality downstream.

4) Because programming languages understand multi-
dimensional data as being in a specific order in memory, there
is a need for glue components that re-arrange data and re-label
its dimensions without necessarily changing its size. Indeed,
when data is stored in a database on disk, it is simple to gain a
desired view of the data, for example by using SQL. However,
in the middle of a real-time workflow, data must be presented
to the components in a format that they expect and understand.
This requires a specific ordering of data in memory.

These insights guide the design for the reusable glue and
analysis components presented in this paper. From a general
perspective, designing a smaller number of components to
assemble workflows with finer step decomposition allows
for more general processing and more accurate performance
expectations than designing more numerous components each
having more complex functionality.

IV. REUSABLE COMPONENTS

This section provides greater details about the individual
SuperGlue components and how a small number of parameters
allow the them to operate (a) on a variety of different input
data formats, and (b) in a user-specified way.

Select Given an input stream that includes an array with any
number of dimensions, Select extracts certain indices from one
of the dimensions. Thus, it outputs an array with the same
number of dimensions, but with the dimension of interest
having a smaller size. In order to select the quantities of
interest, the component uses a header which must be passed
by the previous component in the workflow. The header is
a list of strings that name the quantities in the dimension of
interest. This allows for easy selection of quantities at runtime
when Select is launched.

Dim-Reduce Dim-Reduce is a glue component that removes
one dimension from its input array, “absorbing” it into another
dimension without modifying the total size of the data. The
other dimensions are left unchanged. This component can
work with an input array having any number of dimensions.
The output is an array with one dimension removed and
with another dimension that has been re-defined. When using
this component, the user must specify which dimension to
eliminate and which to grow.

Magnitude In our current implementation, Magnitude ex-
pects a two-dimensional array as input, where one dimension
spans the data points at each time step (particles in the case
of LAMMPS and grid points in the case of GTC) and the
other dimension spans any number of components of the
same vector, for example the three-dimensional components of
velocity in the LAMMPS workflow. Magnitude calculates the
magnitudes of the vectors from the values of their individual
components and outputs a one-dimensional array of the new

values. Which dimension is which in the input array is
specified by the user at runtime. A small number of changes
and a few start-up parameters could generalize this code to
perform any number of common operations that calculate a
quantity from many, applying a known formula over a two-
dimensional dataset, thus allowing this component to fit into
a variety of scientific workflows.

Histogram The processes that make up the Histogram com-
ponent partition among themselves a one-dimensional array of
data. They communicate to discover the global minimum and
maximum values in the array, create a number of bins between
these two extremes, and then communicate again to count the
number of values in the globally partitioned array that fall in
each bin. The number of bins to use must be passed to the
component when it is launched.

Dumper While this component was not created in time for
this paper, the value of a component specifically designed to
be the endpoint of a workflow is clear. The key goal for this
component is to offer a way to write an ADIOS stream into an
output file using some particular format. Whether to write the
workflow output as HDF5, ADIOS-BP, or a simple text file
could simply be selected by the user as an option, requiring no
modifications to existing components, and no re-compilation.

Plotter Another component that would be of value would be
one with a graph plotting capability. For example, GNU Plot
takes a simple text input description and generates a graph.
Rather than having the graphing component write to disk, it
should also push out a stream to some other consumer. An
additional Dumper that writes an image file in a particular
format would be a valuable addition.

Initial evaluation results are on the poster itself.

ACKNOWLEDGMENTS

Sandia National Laboratories is a multi-program laboratory
managed and operated by Sandia Corporation, a wholly owned
subsidiary of Lockheed Martin Corporation, for the U.S.
Department of Energy’s National Nuclear Security Adminis-
tration under contract DE-AC04-94AL85000.

This work was supported by Advanced Scientific Com-
puting Research, Office of Science, U.S. Department of En-
ergy, under Contract DE-AC02-06CH11357, program manager
Lucy Nowell.

REFERENCES

[1] Z. Lin, T. S. Hahm, W. W. Lee, W. M. Tang, and R. B. White. Turbu-
lent transport reduction by zonal flows: Massively parallel simulations.
Science, 281(5384):1835–1837, September 1998.

[2] B. Ludäscher, I. Altintas, C. Berkley, D. Higgins, E. Jaeger, M. Jones,
E. A. Lee, J. Tao, and Y. Zhao. Scientific workflow management and
the kepler system: Research articles. Concurr. Comput. : Pract. Exper.,
18(10):1039–1065, 2006.

[3] G. Malewicz, I. Foster, A. Rosenberg, and M. Wilde. A tool for prior-
itizing DAGMan jobs and its evaluation. High Performance Distributed
Computing, 2006 15th IEEE International Symposium on, pages 156–168,
0-0 2006.

[4] S. Plimpton, R. Pollock, and M. Stevens. Particle-mesh ewald and rrespa
for parallel molecular dynamics simulations. In Proceedings of the Eighth
SIAM Conference on Parallel Processing for Scientific Computing, PPSC
1997, March 14-17, 1997, Hyatt Regency Minneapolis on Nicollel Mall
Hotel, Minneapolis, Minnesota, USA. SIAM, 1997.


	Introduction
	Workflows
	Design
	Insights: Overview

	Reusable Components
	References

