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ABSTRACT

Integrated Application Workflows (IAWSs) for processing data
prior to storage on persistent media requires scalable mech-
anisms to ensure operations are completed correctly. Tra-
ditionally, processes have used storage systems for the co-
ordination role by placing files or directories as completion
signals. With storage systems already a frequent bottleneck
in overall system performance and with increasing system
sizes, this approach is increasingly inadequate and needs to
be replaced with a scalable mechanism that can coordinate
the operations of 100,000s of clients and 10,000s servers.

Our previously demonstrated Doubly Distributed Trans-
actions (D?T) protocol (HPDC 2012 poster and [2]) showed
a potential solution, but suffered from scalability limita-
tions and undue server-side requirements. The improved
version addresses these limitations and demonstrates scala-
bility with low overhead. (HPDC 2013 poster and [1]). This
poster focuses on fault detection and recovery mechanisms
implemented and the overheads measured. The performance
is similar to the success case with only the addition of ap-
propriate timeouts.

1. INTRODUCTION

TAWs are projected to be essential for scientific computing
for extreme scale platforms. These IAWs integrate scientific
simulations and data analytics tools into a more tightly con-
nected workflow. Key with this model is the move to elimi-
nate using centralized storage for intermediate data storage
between the workflow components. The current standard of
using the persistent storage system for staging intermediate
results becomes infeasible. Instead, the focus is on develop-
ing a new mechanism that replaces the centralized persistent
storage mechanism with in compute area data storage and
integrated processing.

Existing distributed messaging protocols including Paxos-
based implementations like Zookeeper cannot address this
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situation. D?T addresses parallel clients while the Paxos-
based algorithms all address a single client with multiple
server copies. By introducing both parallel clients and dis-
tributed or parallel servers, fault detection and recovery are
much harder to manage.

The kind of TAW environment we are targeting includes a
logically shared data staging area with multiple application
clients. Transactions manage data movement from the sim-
ulation to the staging area, the data processing in the analy-
sis/visualization routine, and the subsequent data movement
to storage. For this evaluation, we focus on the data move-
ment case because it is the most intensive and demonstrates
the possibilities at scale.

The poster will include information about the protocol
itself to aid viewers. The top level of the hierarchy is the
coordinator, the middle layer is sub-coordinators, and the
bottom are subordinates (Figure 1). In short, we gather and
aggregate up the hierarchy and then broadcast back down.

Figure 1: Example Hierarchy

2. FAILURE DETECTION AND RECOVERY

For failure recovery to work, any process must be able to
determine what the overall system status was and poten-
tially take over any role. For example, if a sub-coordinator
fails, any of its subordinates must be able to step into the
role for the system to effectively continue. If the overall
coordinator fails, the same holds true. This prompts the re-
quirement that any failure be globally known for the system
to be able to recover. Further, the full list of singleton and
global transactions must be known by all processes or they
cannot step into a role assigned to them. This requirement
does incur additional messaging and storage requirements,
but there is no other way to guarantee that continued opera-
tion or recovery may be possible. This additional messaging
has been incorporated in the protocol.

A suitably long timeout must be selected to not cause false
positives without introducing undue delays when a failure is
detected. Fortunately, the typical and even worst case ob-
served performance is just a fraction of a second. There is
an additional challenge introduced by the hierarchical struc-



ture of the new protocol. In the case of a subordinate fail-
ure, the sub-coordinator must wait for the timeout interval.
The difficulty is that the coordinator is also waiting on the
sub-coordinator. That prompts the need for a longer time-
out period. The specifics of these periods and how they are
handled for each role is detailed below.

While this timeout idea works at a basic level, it is insuf-
ficient to handle all of the failure cases. The specifics of how
these timeouts are adjusted will be discussed in each case.

2.1 Subordinate Failures

Subordinate failures are the most straightforward because
they largely stay localized. In Figure 1, if process 4 fails, the
timeout can be localized.

2.2  Sub-Coordinator Failures

When a sub-coordinator fails, both the subordinates that
are managed by it and the overall coordinator have to be
managed. Consider the failure of process 3 in Figure 1.

In this case, the failure is detected in multiple locations
simultaneously. First, all of the subordinates of process 3,
processes 4 and 5 in this case, notice that 3 is not responding
as expected within the short timeout period. The new sub
coordinator tells its peers that process 3 has failed. Just like
with the subordinate failure, this notification is sent to all
of the subordinates. In this case, because a sub-coordinator
failed, the aggregation step never occurred for that sub-tree
and the overall coordinator causes the operation overall to
fail.

The complication comes in what processes 1 and 2 do
because of the timeout. In this scenario, when the gather
operation fails, process 0 has already collected the data from
1 and 2, in the role of a sub-coordinator, Processes 1 and 2
are then waiting for the long timeout for the response. The
problem is that process 0 is timing out using the long time-
out when waiting for process 3. The solution is discussed as
part of the poster.

2.3 Coordinator Failures

When the overall coordinator fails, only the sub-coordinators

need to worry. However, it is not quite that straightforward.
In Figure 1, process 0 represents the overall coordinator.

In this case, the subordinates have all sent out their mes-
sages to their sub-coordinators and are waiting for the re-
sponse back. In this case though, processes 1 and 2 treat
the coordinator as a sub-coordinator as well with a short
timeout. The problem is that the sub-coordinators also are
waiting with a short timeout on the coordinator to accept
their aggregated messages. In this case they need to abort
their wait and tell their subordinates to abort waiting as
well. If they continue to wait, there will not be any possible
downward message broadcast possible other than to indi-
cate the failure. In this case, the wait can be short-circuited
avoiding any additional wait times. The messaging about
the coordinator rank failure triggers this short circuit.

3. EVALUATION

Tests are performed on Cielo, the Cray machine at LANL
with tests at up to 65536 clients.

To test the failure recovery process, we inserted code for
a single process to skip the rest of the test harness to rep-
resent a failure. Otherwise, the tests are identical to those
performed for the general evaluation.

The results presented here represent the worst case times
for all of the tests. We chose this metric because the impact
of the worst case is critical for determining if fault detection
and recovery is too expensive. The short timeout value is
set to 5 seconds while long is 10 seconds. Results are shown
in Figures 2, 3, and 4.
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Figure 2: Worse Case Subordinate Failure Overhead
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Figure 3: Worse Case Sub-Coord. Failure Overhead
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Figure 4: Worst Case Coordinator Failure Overhead
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