Consistency and Fault Tolerance Considerations for
the Next Iteration of the DOE Fast Forward Storage
and 10 Project

Jay Lofstead
Sandia National Laboratories
gflofst@sandia.gov

Abstract—The DOE Extreme-Scale Technology Acceleration
Fast Forward Storage and IO Stack project is going to have
significant impact on storage systems design within and beyond
the HPC community. With phase 1 of the project complete, it is
an excellent opportunity to evaluate many of the decisions made
to feed into the phase 2 effort. With this paper we not only
provide a timely summary of important aspects of the design
specifications but also capture the underlying reasoning that is
not available elsewhere.

The initial effort to define a next generation storage system
has made admirable contributions in architecture and design.
Formalizing the general idea of data staging into burst buffers for
the storage system will help manage the performance variability
and offer additional data processing opportunities outside the
main compute and storage system. Adding a transactional mech-
anism to manage faults and data visibility helps enable effective
analytics without having to work around the IO stack semantics.
While these and other contributions are valuable, similar efforts
made elsewhere may offer attractive alternatives or differing
semantics that could yield a more feature rich environment
with little to no additional overhead. For example, the Doubly
Distributed Transactions (D’T) protocol offers an alternative
approach for incorporating transactional semantics into the data
path. Another project, PreDatA, examined how to get the best
throughput for data operators and may offer additional insights
into further refinements of the Burst Buffer concept.

This paper examines some of the choices made by the Fast
Forward team and compares them with other options and offers
observations and suggestions based on these other efforts. This
will include some non-core contributions of other projects, such as
some of the demonstration metadata and data storage components
generated while implementing DT, to make suggestions that may
help the next generation design for how the IO stack works as a
whole.

I. INTRODUCTION

Current production HPC IO stack design is unlikely to
offer sufficient features and performance to adequately serve
the needs of an extreme scale platform. To address these
limitations, a joint effort between the US Department of
Energy’s Office of Advanced Simulation and Computing and
Advanced Scientific Computing Research commissioned an
effort to develop a design and prototype for an 1O stack suitable
for the extreme scale environment. This is a joint effort led
by Lawrence Livermore National Laboratory, with the DOE
Data Management Nexus leads Rob Ross and Gary Grider as
coordinators and contract lead Mark Gary. The participating
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labs are LLNL, SNL, LANL, ORNL, PNL, LBNL, and ANL.
Additional industrial partners contracted include the Intel
Lustre team, EMC, DDN, and the HDF Group. This team
has developed a specification set [8] for a future 10 stack
to address the identified challenges. The first phase recently
completed with a second phase currently getting underway as
of early 2014. The core focus of the first phase was basic
functionality and design. Overriding many of the decisions
during this and any subsequent phases is the reality of budgets.
Placing GBs of NVRAM on every node, while a potentially
advantageous approach, is not financially feasible. With this
in mind, the second phase will refine this design incorporating
fault recovery and other features missing from the first phase.

The overall design seeks to offer high availability, byte-
granular, multi-version concurrency control. Through the use
of a copy-on-write style mechanism, multiple versions of an
object can be stored in potentially greatly reduced space. It
assumes the client interface will be through an IO library
affording a more complicated interface that offers richer
functionality requiring only minimal end-user code changes.
Managing most data access in a platform-local layer rather
than requiring writing to centralized storage will better support
the performance and energy requirements of extreme scale
integrated application workflows. At a more detailed view,
the various layers of the IO stack each contribute different
functionality and performance implications.

The overall target machine architecture is illustrated in
Figure 1.

Fig. 1.

Target Machine Architecture

The basic architecture incorporates five layers. The top
layer is a high level IO library, such as the demonstration



HDFS5 library [21]. The intent is to only have access to the
storage stack through such an API to manage the complexity
of working with the lower layers. For HDFS5, the Virtual Object
Layer (VOL) interface is used to replace the default function-
ing, such as working through MPI-IO, to instead use the new
stack functionality. Below the user API is an IO forwarding
layer that redirects IO calls from the compute nodes to the
IO dispatching layer. This 10 forwarding layer is analogous to
the function of the IO nodes in a BlueGene machine. The next
two layers have considerable functionality. The IO dispatcher
(IOD) serves as the primary storage interface for the IO stack
and is the only way to reach the persistent storage array
in lower layers. The Distributed Application Object Storage
(DAOQOS) layer serves as the persistent storage interface and is
intended to be the foundation on which everything else is built
with no dependence on any technologies specified above it.
For example, the IOD layer and burst buffers, using additional
storage outside of the storage array to stage and possibly
process data prior to moving it to storage, are not required
for DAOS to operate properly. At the bottom is the Versioning
Object Storage Device (VOSD). It serves as the interface for
storing objects of all types efficiently.

The focus of this paper is primarily the IOD layer given the
critical role it has in the performance and functionality of the
entire stack. Most of the key features explored in this paper all
have a strong presence in the IOD layer motivating the focus
of this examination.

The core idea for IOD is to provide a way to manage
the 10 load that is separate from the compute nodes and the
storage array. Communication intensive activities, such as data
rearrangement, can be moved to the IOD layer offloading the
communication load from the compute nodes. IOD has three
main purposes. First, if the optional burst buffer is available,
it works as a fast cache absorbing write operations for the
slower trickle out to the central storage array. It can also
be used to retrieve objects from the central storage array for
more efficient read operations and offers data filtering to make
client reads more efficient. Second, it offers the transaction
mechanism for controlling data set visibility and to manage
faults that would prevent a data set from being used. Third,
data processing operations can be placed in the IOD. These
operations are intended to offer data rearrangement, filtering,
and similar operations prior to data reaching the central storage
array.

While these ideas are not necessarily new, they are new
twists on best of class efforts for these technologies. For
example, offloading the collective two-phase data sieving from
the compute nodes to reorganize data has proven effective at
reducing the total time for writing data due to fewer partic-
ipants involved in the communication patterns [16]. Beyond
these broad items, there are many important details some of
which are examined in more detail below.

Along with the analysis of the published design documents,
a discussion of the design philosophy representing the overall
intent is presented. This information represents information
that may or may not have been written down, but is the
intent of ultimate product. These insights were gained based on
personal conversations with the team members [4], [11], [3]
discussing some of the potential challenges with the design
as written. These ideas are presented to give a fuller picture

of where the project is going rather than dwelling on the
limitations of the published documents.

The rest of the paper is organized as follows. First, an
overview of the target machine architecture and how it maps to
the proposed components is presented in Section II. Section III
provides a more detailed overview of the IOD layer and
discusses some of the features of incorporating burst buffers
as designed and suggests some considerations and alternatives
for the next generation of this project. Section IV discusses
the transactions approach offered in the IOD layer and the
corresponding epochs in the DAOS layer. It also offers a
comparison to the D?T system given the very similar high-level
design and motivating use case. Section V discusses the system
overall with recommendations on what design elements should
be considered based on broader issues with current HPC data
centers. The paper is concluded in Section VI with a summary
of the broad issues covered in the paper.

II. OVERVIEW

The demonstration system uses some particular existing
technology to enable testing the proposed concepts. The map-
ping is presented in Figure 2. We examine this mapping by
evaluating the descriptive blocks at the bottom of the figure.

Application
VoL

1/0 Forwarding Client

Fig. 2. Mapping FFSIO Components to Machine Architecture

The dark blue block that includes the HDF5 VOL block
represents the User API layer. It is worth noting that while this
is the intended interaction mechanism, it is still possible for
other interfaces like MPI-IO and POSIX to interact with the
system. The 10 Forwarding layer is represented by the two
black boxes. The represented split shows that the IO nodes
can offer some control over how data is moved from the
compute area towards storage. The IO dispatcher, the primary
focus of the evaluation presented in this paper, is shown in
the light green box. The one extension is the dark pink block
representing technology like SSDs on the IO nodes. This is
where a burst buffer, if the NVRAM is available, would be
hosted. The DAOS layer is the yellow box. The VOSD is the
purple box.

The specification of HDF5 and Lustre at the top and
bottom of the stack is an expedience for demonstrating the
functionality. In a production version of the proposed system,
these may be represented by other technologies.

Throughout the paper, multiple terms are used to define
an operation applied to data outside of the main application
computation. These include both function shipping and just



the term operator. In all cases, the idea is a piece of code
is placed at some location along the IO path processing data
as it passes through that point. Note that this works in both
directions as well as in place. For example, when reading,
an operator may be used to only retrieve the pieces of a large
data set from the DAOS and VOSD layers into the IOD caches
automatically. It is also possible that an operator is deployed
to either rearrange data or generate a new copy with different
ordering. For example, changing the fast dimension for a multi-
dimensional array can greatly improve reading performance for
particular reading patterns. In all cases, these operators offer
a chance to apply a relatively light piece of processing to data
rather than an intensive data analytics operation. These heavy-
weight operations should be left to the main computation
resources leaving capacity for other concurrent applications
using the 10D layer.

III. TOD LAYER AND BURST BUFFERS

The IOD layer is intended to function as a higher per-
formance, machine local caching layer for the DAOS/VOSD
layers. Even in a simplified system, by keeping the IOD layer
as part of the stack, making portable code is simpler since
it eliminates the need to use a different lower level APIs
from the user layer (e.g., HDFY) if the system lacks a feature,
such as burst buffers. In an ideal design, the IOD API could
function solely an directly on the DAOS servers. The reality
is that performance demands and budget constraints will force
something like burst buffers to compensate for the performance
afforded and to offer a location to process data down to
volumes that can fit through the limited bandwidth. Given the
criticality of burst buffers and the transaction mechanism for
end-to-end performance, these ideas are examined in detail
below with comparison to alternatives that may have been
avoided due to perceived performance limitations. In particular,
the D?>T protocol was designed to address these sorts of
scenarios and has demonstrated excellent performance.

The idea of burst buffers were initially explored in the
context of data staging [2], [1], [17], [24]. These initial designs
all use extra compute nodes to represent the data storage buffer
given the lack of any dedicated hardware support for this
functionality. The desired outcome of these initial studies is to
motivate how such functionality might be incorporated and the
potential benefits. Later, these concepts were proposed to be
incorporated as part of the 10 stack [18], [6], [5]. The current
Fast Forward IOD design recommends incorporating SSDs,
but specifically lists these devices as optional. Unfortunately,
not incorporating burst buffers and the use of SSDs in the
10D layer may be problematic. First, the IOD design currently
is written assuming burst buffers. This means that the bulk
of 10 operations will only hit the IOD layer and proposed
functionality, such as the function shipping, do not discuss the
impact on the DAOS layer or the operators themselves should
a burst buffer not be available. Consider the important func-
tionality of data rearrangement and doing things like changing
the fast array dimension on shared, spinning media. The
design of DAOS assumes that it will only be involved when
persisting a completed transaction and only for a fraction of
the total transactions created. Transaction frequency at the IOD
layer can be higher since IOD does not “flatten” transactions.
Flattening is the process of transferring the set of copy-on-
write changes from transaction/epoch n to transaction n + m

into the DAOS layer. The DAOS layer mirrors the copy-on-
write functionality, but stores the differences between epochs
rather than individual transactions. The primary difference
is that at the DAOS layer, data is stored in large, logically
contiguous chunks to manage the metadata load and hopefully
improve read performance.

One of the bigger concerns is that the original data staging
proposals all used compute nodes while the newer proposals
seek not only to make them a fixed portion of the IO stack,
but also shared across all machine users. The PreDatA [24]
paper in particular examines the potential costs and advantages
of where to place operators similar to the IOD proposed
function shipping. There are two key takeaways from PreDatA.
First, placement matters. Depending on the communication
intensity vs. computation intensity, where along the 10 path
to place the operation can matter significantly. Second, and
more importantly, the amount of time spent processing for
the operators was stretched to the point where it consumed
nearly all of the time between IO operations. The given
ratios of compute processes to staging process examined is
representative for future extreme scale platforms. If anything,
the ratios offer more staging processes than IOD processes
would be available.

In the case of the written IOD design, it describes a
fixed-sized staging area that is partitioned on a per-application
basis. This is unlikely to be useful because of the limited
compute and communication capacity to spare to perform these
operations at a bottleneck in the IO path. The use of a separate
data staging area intentionally separate from the IO path allows
using operators on limited resources leaving the IO path clear
for strictly data movement. A nuance of this design is discussed
in the Design Philosophy below.

By concentrating the Burst Buffers and function shipping
into the storage stack, three problems arise. First, the amount
of network bandwidth, IO bandwidth, and compute power
consumed for example operations from a single application is
likely to completely monopolize the IOD processes. Second,
if space and time partitioning is used instead, the functionality
risks being too small to be useful. For example, if some of
the 10 nodes are dedicated either throughout an application
run (space partitioning) or for just phases of the application
runtime (time partitioning), the allocated capacity or ownership
duration may be insufficient to be useful. Third, the long-term
hardware performance advantage for SSDs is questionable.
Recent studies have shown that the erase-before-write and in-
terference between reading and writing with flash-based SSDs
can cause severe performance problems [20]. The inclusion of
an optional use SSD layer in the new Trinity machine at Los
Alamos will offer a test bed to determine how likely these
observed problems would affect a production extreme scale
platform.

Current NAND-based flash devices top out at around 400
MB/sec. The key spec that is missing from this number is that
400 MB/sec is a measure of the fixed number of available
IOPS multiplied by the block size. This represents the ideal
streaming performance possible. The problem is that it costs an
IOP to read 1 byte or 1 block (4KB or 8KB, depending on the
device). It costs 1 IOP to write a full block—usually. In some
cases, it will cost 2 IOPs. This accounts for the required pre-
erase write prior to writing to a reused block. In the worst case,



it can be 3 or more IOPS per write. For example, if writing
forces both garbage collection and block compaction, many
blocks may have to be read, the data combined, the blocks
erased, the combined data written, and then the intended write
operation can finally proceed on the newly freed blocks (erase
and then write). One-third of 400 MB/sec, about 133 MB/sec,
is well below the streaming performance of HDDs. Granted,
there is still rotational and seek latency to deal with for HDDs,
but the advantage for SSDs has evaporated and potentially
turned into a considerable penalty at a cost premium. There are
faster SSD solutions on the market that incorporate DRAM for
caching and using the PCle bus, for example, but their price
precludes them from use in an extreme scale platform given
budget constraints.

Given these features, the optionality and even incorporation
of burst buffers in the current design should be carefully
considered. Much of the advanced, key functionality proposed
as they are currently designed ultimately relies on the existence
of burst buffers to work. Further thought about how to have
an IOD layer both with and without a burst buffer is required
before they can be considered optional. As the design stands
today, they are a required part of the IOD layer for proper
functioning. Unfortunately, it is not clear that they can address
the performance concerns they are intended to cover.

A. Design Philosophy

The burst buffers design, as presented in the IOD doc-
uments, limits the placement of the function operators and
SSD buffers to the IO nodes. The team does acknowledge
the limitations of this design and intend to ultimately focus on
spreading the IOD layer from the IO nodes into the compute
area as well. This is intended both to help address the limita-
tions of the IO bandwidth and compute capability of these few
nodes for data processing, but also to take advantage of new
layers in the storage hierarchy. By incorporating NVRAM into
compute nodes, new options for buffering data prior to being
moved to centralized storage become available and addresses
some of the concerns about SSD performance. For example,
including a small amount of Phase Change memory into many
or most compute nodes offers a way to move data outside of
both the compute and IO path for data and communication
intensive operations. Other projects [24] have suggested this
will have value, but the cost will have to be considered as part
of the overall platform budget. This lessens the impact of some
operators while offering additional options for places to store
data.

Burst buffers being optional is a high level goal, but not one
considered at a detailed level within the design. For example,
if there is no burst buffer, all of the advanced functionality
proposed for the IOD layer would have to work against the
DAOS layer instead. For example, function shipping assumes it
will operate on fast, local data within the IOD layer rather than
against the globally shared DAOS layer. With the additional
desire to support using compute node resources for these oper-
ations, serious work will be required to make a fully functional
end-to-end IOD layer implementation for a production system.

Another concern that is acknowledged, but no thought
has been applied to, is the requirement that a single IOD
process of the set assigned to an application is the master for

any operation. Should the number of concurrent applications
exceed the available nodes, sharing an IOD process will be
required. The requirements both in terms of scheduling and
resource management were cut from the project due to funding
limitations. Since partitioning of the IOD processes for exclu-
sive use by particular applications is the assumed operating
mode, should insufficient IOD resources be available, either a
job could be delayed or IOD resources could be reallocated
from a different process could be redeployed for use by the
new job. Handling resilience concerns for the IOD processes
must also be address. These sorts of considerations still need
to be made for a full production system.

IV. TRANSACTIONS, EPOCHS, AND METADATA

The transaction mechanism manifests in two forms. At the
IOD layer, they are called transactions and are used to judge
whether or not a set of distributed, asynchronous modifications
across a set of related objects is complete or not. It is also used
to control access by treating the transaction ID of committed
transaction as a version identifier. At the DAOS layer, they
are called epochs and represent persisted (durable) transactions
from the IOD layer. Each of these offers different functionality,
but are connected as is explained below. How these differ from
the DT approach is also explored. While IOD’s and D*T’s
transactions are seemingly very different, they use a similar
high-level design, but very different implementation, to solve
the same problem.

A. 10D Transactions

To understand how transactions are used in the IOD layer,
some terminology and concepts must be explained first. At the
coarsest grain level is a container. Each container provides the
single access context through which to access a collection of
objects. Transactions are used to treat a series of modifications
to the objects within a single container atomically. Each
transaction is simply an arbitrary sequence of read and write
operations by a single application to that single container that
is ultimately treated as an atomic action. Each transaction must
be managed through the end-user API with begin and end calls
to bracket the set of operations. Conceptually, containers corre-
sponds to a something akin to an HDFS file in a traditional file
system. The objects in each container represent different data
within a file. The three initially defined object types are key-
value stores, multi-dimensional arrays, and blobs. The easiest
way to understand these types is to evaluate these from the
perspective of an HDFS5 file, the initial user interface layer.
The key-value store represents a collection of attributes or
groups. The array represents a potentially multi-dimensional
array. The blob represents a byte stream of arbitrary contents.
The fundamental difference between an array and a blob is
that the array has metadata specifying the dimension(s). At
the physical layer within the IO nodes, all of these objects
may be striped across multiple IO nodes. Given this context,
the transactions come in two forms.

First is a single leader transaction managed by IOD based
on calls from a single client. The underlying assumption is that
the client side will manage the transactional operations itself
and the single client is capable of reporting to the IOD how
to evolve the transaction state. Passive failures are detected



based on the single client only. Any actively detected failure
will have to be managed by this single client.

The second form is called multi-leader and has the 10D
layer manage the transactions from a collection of clients. In
this case, when the transaction is created, a count of clients is
provided to the IOD layer. As clients commit their changes to
the container, the reference count is reduced. Once the count
reaches 0, the transaction is automatically committed. Failure
detection is fully passive based on all participating clients.

In both cases, the end user must interact with the trans-
action mechanism through the end-user API (e.g., HDFS) to
specify the transaction type and potentially specify a transac-
tion ID.

1) Design Philosophy: Undocumented, but inherent in the
design of these transactions is how faults are detected. The
initial design assumes the current Lustre fault detection mech-
anism that can determine if a process or node is no longer
reachable. This detection happens at the DAOS layer and when
a fault is detected, the rollback process is pushed up to the IOD
layer for all non-persisted or non-committed transactions. This
defines how a fault will be detected and what will trigger a
passive fault recovery (i.e., transaction abort).

There are two steps for beginning a transaction on a
container. The first step is for one or more process to open the
container. This handle can be shared eliminating the need for
every participating process to hit the IOD layer to open the file.
The second step is a call to determine how many leaders will
participate in the transaction. In the single leader case, there
is no aggregation of success/fail statuses to determine the final
transaction state. Instead, it is assumed that the client will fully
manage the transaction. In the multi-leader model, some subset
from 2 to n where n is the count of all processes, declare
themselves a leader for this container operation to the IOD
layer. Any number of processes can participate in modifying
container without regard to whether or not they are a leader.
Once each leader has finished, with the assumption that any
clients they may be responsible for are finished as well, the
IOD layer aggregates those responses to either commit or abort
the transaction.

Ultimately, with the passive detection of faults for transac-
tion leaders, the transaction mechanism can work very well. A
mostly unstated restriction that is being relaxed is that every
sequential transaction on a container is considered dependent
on the earlier transaction. Should one output be delayed and
the subsequent five succeed, when the delayed process finally
fails, all six transactions are rolled back. The thought of using
this mechanism to store subsequent checkpoint outputs in the
same container to both save space, but not care if one fails,
cannot work in the current form. This has been acknowledged
and is being relaxed requiring a new parameter to the creation
of a transaction determining if it will be dependent or not.

B. DAOS Epochs

The Epoch mechanism differs from transactions. Instead of
focusing on when a particular output is complete, an epoch
represents incremental persisted copies of a container. To
simplify the mapping between an IOD transaction and the
DAOS epochs, when an 10D transaction is persisted to DAOS,

the IOD transaction ID is the used as the epoch ID. The key
difference is that at the DAOS layer, some transaction (epoch)
IDs will not be represented since not all IOD transactions are
necessarily persisted.

C. Metadata Management

Metadata management has been a perennial challenge for
parallel storage systems. Eliminating metadata management as
a special case and instead treating it just as data is a central
design goal of the Fast Forward project. At one extreme, the
“file” system provides a way to store objects returning IDs
back to the user. The user is then responsible for understanding
what the byte stream in that object means and how to identify
it. Think of it like a numbered bank account that contains a
certain amount of money, but the only identifier is a number
rather than the name of an account holder. This introduces
the burden of remembering what an object really is to the
user layer and any communication of the object identity up
to the user. There is abstract third-party entity, such as the
naming serivce part of traditional file systems for a different
user to search for an object. The main dangers are losing an
ID means losing how to interpret the bytes in an object and
no way for two applications to use the storage system to share
data without communicating newly created IDs. At the other
extreme are traditional file systems that offer object storage
along with naming, authentication, and authorization services.
In the former case, there is no overhead in the file system
for maintaining any metadata associated with the stored byte
stream. In the latter case, the file system offers a consistent way
to handle it and includes tracking and identification services
at a performance cost to maintain the metadata consistently.
FFSIO uses a hybrid approach for metadata management that is
half-way between providing no inherent metadata support and
having a fully integrated, but separate metadata management
system.

Eliminating metadata as a core component of a file system
is not new. It has been explored as part of the Light Weight
File Systems project [19]. In LWFS, the metadata service is
explicitly limited to a user task with the storage layer limited
to data storage/retrieval, authorization, and authentication. This
approach proved feasible. Using this hybrid approach is less
common [22] and introduces other issues.

IOD and DAOS both share a philosophy that they will
have to maintain the metadata about how the physical pieces
of the logical objects are striped and where they are placed.
The primary metadata management is done at the DAOS
layer with the IOD layer relying on the DAOS layer for all
authoritative information about containers and objects. The
only place where the IOD layer manages metadata for itself is
to manage how the different objects are striped across the 10
nodes.

1) Design Philosophy: While the metadata design is not
fully defined, there are a few things that are intended. For
example, there is a standard, well-known container that is the
system metadata. This includes the list of all other containers.
This container is treated like any other data in the system
and striped as appropriate. Unfortunately, this still couples
the metadata to a single object that must serialize access.
If the metadata, including information about striping and



other data layout operations were separated completely from
the data path, more scalable throughput could be achieved.
The real challenge of this is introduced by the I0OD, DAOS,
and VOSD layers collectively. Each of these requires some
different metadata storage and the migration is transparent
to the user. Supporting fully independent metadata with this
model is difficult. Serious thought on how to do this effectively
outside the data path should be considered for phase two.

Based on the lessons from the D?*T metadata service [13]
construction and the prior experiments with LWES, having a
completely separate metadata service is feasible. Rather than
making it a bottleneck in the 1O path, it is another service that
users must interact with if they need those services. Users can
manage everything by maintaining the metadata including the
list of objects themselves. However, there are drawbacks to
this 100% client-side approach.

With a client-side only approach, there is a serious risk
of the metadata service and the object store getting out of
sync. While having a metadata-less object storage service is
desirable, the different semantics from traditional file systems
requires some considerations. In this case, should these ser-
vices get out of sync, three particular risks are introduced.
First, a client could create a dangling entry in the metadata
service that does not correspond to any objects in the object
store. Second, a client could create orphaned objects that have
no associated metadata entries. Third, updates to the metadata
or object store service should be an atomic operation, but
due to a lack of coordination, a window where the system
is inconsistent appears.

Ultimately, the consistency semantics required must be
determined. If a metadata service is required and it must be
in sync with the object storage service, then additional work
must be performed. In traditional file systems, the metadata and
object storage updates are atomic. With decoupling metadata
from object storage, should this atomicity still be desired, it
requires both the ability for the services to participate in a
task that is part of a larger atomic operation and a higher-level
mechanism to manage the atomic operation.

Overall, while additional work is required to maintain a
client-side only metadata service, it eliminates any potential
bottlenecks related to updating metadata related to the object
storage. The burden of tracking striping and other metadata that
has traditionally been part of the metadata associated with the
file system will have to be maintained by the object storage
service. The lack of a centralized, serialized bottleneck to store
that information improves concurrency.

D. Comparison to Other Protocols

Alternatives, such as Paxos [12] algorithms like
ZooKeeper [10], suffer from two limitations making
them unsuitable for this environment. First, the distributed
servers in Paxos systems are all distributed copies of each
other that eventually become consistent. Given the scale we
wish to address, a single node’s memory is unlikely to be
able to hold all of the data necessary for many operations at
scale. They also do not have a guarantee for when consensus
will be achieved without using slower synchronous calls. For
the tight timing we wish to support, we need guarantees of
when a consistent state has been achieved. Second, these

systems also all assume that updates are initiated from a
single client process rather than a parallel set of processes as
is the standard in HPC environments.

Another effort to offer consistency and data integrity for the
ZFS file system [23] covers some of the same territory. Instead
of a focus on the processes all having a notion of completion
as a transaction, this work focuses on the integrity of the data
movement operations. We view this work as something that
should be considered hand-in-hand with a transaction approach
to ensure the integrity of the movement of the data in addition
to the agreement of processes about the successful completion
of a parallel operation.

The transactions and epochs approach offered by FFSIO is
most similar to D?>T , but is a specialized implementation of
a similar protocol. In this case, D°T is general and must use
more general techniques. The FFSIO transactions and epochs
take advantage of simplifications based on the architecture and
the very specific use.

DT uses a second layer of coordination on the client side
that greatly increases the scalability by consolidating messages
from clients into unique sets prior to sending to the overall
coordinator. A gossip protocol [9] may appear sufficient for
this purpose, but the delay of eventual consistency is strictly
avoided with this protocol to ensure guarantees at particular
states in the code. For example, if a failure occurs, the
global understanding of the role of all processes is required in
order for effective communication to occur for operations like
creating sub-transactions or voting. In this case, the protocol
can offer stronger statements about consistency than these
protocols offer. These features offer a way to easily scale the
transaction protocol given the guarantees we wish to offer. The
IOD approach does nothing to address these concerns.

The details of DT is discussed next to offer a performance
evaluation that may be slower than FFSIO transactions and
epochs for synchronous due to the explicit messaging rather
than relying on the hardware mechanisms. At scale, the FFSIO
performance should be similar to the DT approach.

E. Comparison to D*T

The DT project [15] sought to develop an efficient ap-
proach for handling ACID-style transactions in an environment
with parallel clients and multiple servers (doubly distributed).
Rather than being aimed solely at data movement operations,
D?T seeks to address the general problem of managing any
operation with multiple clients and servers. Consider the man-
agement of the analysis/visualization area, potentially similar
to the IOD concept. The transaction protocol is used to help
manage resizing of the resource allocation to the various
analysis and visualization components. For the purposes of
this discussion, D?T could also be used to manage changing
how IOD processes and/or nodes are used without exposing
these changes to the client processes prematurely. This has
been described and analyzed previously [7].

The example metadata and data storage services created
as part of the D>T project have no dependencies between
transactions that prevent visibility should an older version be
incomplete. This additional, intentional requirement by 10D
offers different functionality than D?>T’s example services. In



the case of DT, the functionality is less, but also avoids some
of the concerns outlined below.

The second iteration of the protocol [14] fixed scalability
issues and demonstrated a scalable client-side coordination
model with excellent performance. The performance measured
for a complex transaction with DT is illustrated in Figure 3.
This performance is explored in detail in a previous paper [14].
Briefly, all of the client processes are split into groups. Each
group is managed by a sub-coordinator. The sub-coordinators
are all managed by an overall coordinator. Clients are expected
to be able to determine the success of failure of any action
they take. Rather than gathering directly from all clients to
the coordinator, messages are aggregated through the tree
with duplicate information removed reducing both the size
and count of messages sent to the coordinator. Broadcasting
messages to clients proceed down the tree through the sub-
coordinators as well. The breakdown of the number of par-
ticipants in each role is shown in Table I. For comparison,
consider the Number of Sub-Coordinators equivalent to IOD
processes. The Processes Per Sub-Coordinator represents the
number of clients that use a particular IOD process. For these
tests, we maintained a balanced distribution and always used
at least two sub-coordinators to slow down the processing.
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TABLE 1. PERFORMANCE TESTS SCALING CONFIGURATION
Processes Number of Processes Per
Sub-Coordinators Sub-Coordinator
256 2 128
512 2 256
1024 4 256
2048 8 256
4096 16 256
8192 32 256
16384 64 256
32768 128 256
65536 256 256

At a high level, both D?T and the TOD transactions have the
same design. In both cases, a hierarchical model is employed.
In the case of DT, it is a purely client-side tree using semi-
synchronous messaging. The messaging itself, in the cur-
rent implementation, uses asynchronous MPI messages. The
synchronous component comes from the timeout mechanism
used to detect faults. It forces a level of coordination and
synchronization for the protocol. For IOD, it is a server-side
tree and fully asynchronous relying on the existing Lustre

fault detection mechanism for failure detection. In both cases,
there is a master in charge of managing the transaction and a
collection of workers that aggregate into the master through
second-level leaders. Beyond that, there are some significant
differences. Some of the different choices made by 10D raise
some possible concern.

The multi-leader model introduces the possibility of forcing
a rollback of an entire transaction when a partial retry might
be sufficient for success. Since the transactions are managed
at a high level rather than the individual tasks, a failure in
a limited distributed task can cause the entire transaction to
fail. For example, consider 10 processes each have 5 tasks,
but 3 of those 10 have an additional shared task to complete.
If the task shared by the 3 processes fails on any of the three,
the entire transaction would roll back because it is a coarse-
grained success/failure. If a concept like sub-transactions at
a task granularity were used, then it would be possible for
the one process that failed to report just that failure. Then the
transaction manager could reassign the resources for these 3
processes and try just that operation again. If it now succeeds,
then the overall transaction can be marked successful only
redoing the minimum amount of work required.

DT has addressed theses issues in a couple of ways. First,
the sub-coordinators each have a list of processes from which
they expect messages. Should a message be missed, it is no-
ticed and corrective action can be taken. Second, DT has the
concept of sub-transactions. The messaging requirements are
illustrated in Figure 4. Sub-transactions represent finer grained
operations than the entire output, D*T can manage multiple
writes per client by using a sub-transaction to represent the
output for any item to the file (container). Because of how the
sub-transactions are managed, the singleton sub-transactions,
ones in which only a single process participates, must be
declared before the transaction begins so that its existence
can be broadcast as part of the begin transaction message.
This ensures there is global knowledge that the sub-transaction
is expected. That way if the coordinator (transaction leader)
fails, whichever process takes over that role knows to expect
a completion message for that sub-transaction or the overall
transaction cannot complete. Global sub-transactions can be
defined at any time since they are a global, synchronized
operation broadcasting their existence. While this additional
layer does introduce messaging, the overhead is quite small.

The advantages of eliminating these messages is not perfor-
mance as demonstrated by the performance of D’T. Instead,
it offers a much less synchronous model that matches with
different programming models, such as Charm++ or other task-
based approaches. Since it can work for the bulk-synchronous
model also, it is a more broadly applicable approach. This
assumes that the observed potential issues can be addressed
successfully.

V. BROADER DESIGN

At a broader level, there are some concerns that were
partially clarified through conversations with the team. Con-
sider a shared file system across an HPC data center. The
current design maintains the metadata in its own container.
Since copying data from the IOD layer to the DAOS layer
requires an explicit persist call, how and when synchronizing
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the metadata across the layers and potentially across machines
occurs is undefined. Delaying synchronization until an explicit
persist is called will reduce the update frequency, but delays
the data visibility on other platforms. Ideally, the metadata
object would need to be automatically persisted every time a
container transaction is persisted to the DAOS layer.

The implication of this is that every transaction persist is
double operation to account for the metadata persist. More
importantly, the IOD-layer version of the metadata container
may contain readable transactions that have not been persisted
to the DAOS layer. How to handle this inconsistency between
the two layers still needs to be explored.

A point of confusion rather than a potential design chal-
lenge is the change in definitions between the IOD layer and
the DAOS layer. For the IOD layer, a container is a collection
of objects. For the DAOS layer, a container is a collection
of objects across a set of shards. For the IOD an object may
be a shard of a global array. For DAOS, a shard can host
a set of DAOS objects. Having the same names with locally
correct, globally conflicting definitions serves to confuse how

the system should work.

VI. CONCLUSIONS

The Fast Forward Storage and IO Stack project has de-
signed a good first pass at addressing the requirements for
an extreme scale data storage mechanism. The split between
the IOD layer and the DAOS layer offers a fast place for
intermediate data without requiring the overhead of writing
to persistent storage. The envisioned transaction mechanism,
while not perfect in the current form, is another good attempt
to address both failures and prevent access to incomplete or
incorrect data by downstream data consumers. Integrated with
the IOD functionality, this concept represents the consensus
approach for what will be required.

The partial metadata management incorporated into the
IOD layer and the lack of consideration for how to handle and
recover from failures are oversights in the current documents.
It is our understanding that these will be addressed in the
next phase and we hope to help inform that effort with our
experiences.

We hope that the efforts made in the D?T, Lightweight
File Systems, and other efforts to explore the requirements for
this space, along with the analysis presented in this paper will
prove useful for the next phase of the Fast Forward project.
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