
Extending MPI to Better Support
Multi-Application Interaction

Jay Lofstead1, Jai Dayal2

1 Sandia National Laboratories
2 Georgia Institute of Technology

Abstract. Current scientific workflows consist of generally several com-
ponents either integrated in situ or as completely independent, asyn-
chronous components using centralized storage as an interface. Neither of
these approaches are likely to scale well into Exascale. Instead, separate
applications and services will be launched using online communication
to link these components of the scientific discovery process. Our experi-
ences with coupling multiple, independent MPI applications, each with
separate processing phases, exposes limitations preventing use of some
of the optimized mechanisms within the MPI standard. In this regard,
we have identified two shortcomings with current MPI implementations.
First, MPI intercommunicators offer a mechanism to communicate across
application boundaries, but do not address the impact this operating
mode has on possible programming models for each separate applica-
tion. Second, MPI Probe offers a way to interleave both local messaging
and remote messages, but has limitations as MPI Bcast and other collec-
tive calls are not supported by MPI Probe thus limiting use of optimize
collective calls in this operating mode.

1 Introduction

The move toward exascale is changing how the scientific computing process
works. Currently, one of two approaches is used. Most commonly, separate,
independent applications are combined into a single process with scripting or
workflow software to ease connecting the output from one component with an-
other as illustrated in Figure 1(a). In a production environment, this is nearly
exclusively done using a centralized storage system shared between pairs of con-
necting components. In general, this is a single storage system. In this approach,
each component can scale independently, but is at the mercy of the file system
performance for end-to-end scalability. Alternatively, applications can incorpo-
rate additional processing pieces, such as analysis or visualization components,
in situ as illustrated in Figure 1(b). In this case, these additional processing
pieces must scale as easily as the host simulation or scaling the combination will
be artificially limited.

The alternative approach to address both of these cases is to use the best of
each while avoiding the penalties of both. By using online data processing areas
(see Figure 2) to create an online workflow, typically called data staging, hybrid



Application 

Storage 

Analysis 1 

Analysis 2 

Visualization 

(a) Offline Processing

Application 

Local Memory 

A
na

ly
si

s/
V

iz
 

S
im

ul
at

io
n 

P
E

 

Storage 

(b) In Situ Processing

Fig. 1. Traditional Scientific Workflow Architectures

staging, or ‘in flight’ processing, the speed penalty of a centralized file system
is avoided and the scalability limitations of a single, integrated, executable are
avoided. This approach, while not without its own challenges, has proven to work
well for both tightly coupled and loosely coupled workflows.

Application 

Storage 

Analysis/Viz 
Analysis/Viz Analysis/Viz 

Fig. 2. Online Processing

MPI provides the concept of an inter-communicator to connect two ap-
plications with MPI messages. This feature works well enough for the inter-
application communication, but MPI does not adequately address the potential
impact of connecting applications on their operating model. Each application,
particularly shared services-style applications, offers a collection of operations to
process data. For shared services applications, one or more of these operations
may be in process or at least a possible next step at any time. This requires
the external interface to seamlessly support any possible message at any time
including the corresponding memory use for each of these messages. For all of
these cases, if any currently processing task issues a collective call, all processes



must participate for the program to continue. The serious implication is that
being responsive to messages from the other application requires periodic checks
for waiting messages. For a services-style application, this external communica-
tion may drive what local processing is performed by different portions of the
local application. To optimize the communication between applications, it be-
comes more efficient to probe for the inter-application messages as well as the
local messages on the communicating processes. The lack of complete support
of message types in the MPI Probe call limits the kinds of operations that can
be used within these applications.

The rest of the paper is structured as follows. In Section 2 we discuss some
of the related work as well as work that motivates the need for these changes.
Section 3 discusses the current design and the implications of these decisions for
programming of participating application components. The proposed solution is
presented next in Section 4. Finally, conclusions are presented in Section 5.

2 Related Work

Separate MPI applications operating as a single workflow using isolated applica-
tions to isolate failures has been demonstrated previously. The C-MPI project [11]
uses DHTs to connect MPI applications. The LDM [10] offers a similar approach
to data staging techniques as demonstrated in the LEAD [2] project. In this case,
the various data processing components are linked together to form the process-
ing workflow.

Offline workflows have been built using a variety of tools. For example, Dag-
man [5], Pegasus [7], and Kepler [4] each provide a way to connect various compo-
nents in an ordered way to process scientific data. Scientists have also assembled
similar systems less formally using scripts. They each work by providing a way
to trigger a component at a given time given a set of conditions, such as a prior
dependency component has completed processing. In all of these cases, the use of
centralized storage as an integration point introduces a performance bottleneck.

The alternative approach of in situ processing, such as is done by ParaView [6]
and VisIt [9], has its own problems. For example, the CTH [3] shock physics
code in use at Sandia easily can scale to 100,000 cores with an executable size of
around 30 MB. When incorporating ParaView for in situ processing and visual-
ization, the executable grows to around 300 MB and has difficulty scaling beyond
around 30,000 cores. While ParaView is actively working to correct these scaling
limitations, those fixes will not solve the increased memory footprint fully.

PreDatA [12] offers ‘in flight’ data processing from the simulation to disk by
hosting the processing in various locations along the data path. Alternatively,
DataSpaces [1] and the related projects at Rutgers focus on attempting to store
data in an online repository for querying by another application. These ap-
proaches currently rely on custom connections between components and do not
offer the portability offered by MPI intercommunicators. The Network Scalable
Services Infrastructure [8] offers an RPC-style interface to efficiently connect be-



tween separate applications using native interconnect techniques, but offers no
default services.

3 Current Design Attributes

Current applications that wish to participate in an online workflow would in-
corporate some minor changes. For example, an additional interface that com-
municates with the related applications is added and then incorporated into the
processing loop. This simplifies the application changes by limiting the number
of places where code to check for inter-application messaging may occur. This
isolates these changes while allowing the application to run as it is originally
written. While this is simple in itself, scenarios such as when there is active
processing in one or more of the participating applications causes problems. The
difficulty with message probing is the lack of support to detect any collective
operations. For our motivating example, a mass data transfer from one appli-
cation to another requires some configuration information to be sent across the
inter-application control message interface to indicate the number of variables,
their types, extents, and data types. The amount of data in this message is un-
known and only slightly bounded. Another message type coming across the same
interface will be a variable itself being sent across the application boundary. In
this case, the size could be as much as 10% or more of the node’s local memory.
The kinds of processing that may occur for a variable may require that all pieces
of the global variable are processed simultaneously to generate some summary
or derived value. Frequently these operations are performed using collective calls
as part of a larger processing sequence.

Efficiency strongly suggests that the configuration information is sent across
once and distributed out to participating processes locally. This distribution of
messages among the processes of one application is generally performed using an
MPI Bcast or similar mechanism to take advantage of the optimizations incorpo-
rated into the MPI standard. The difficulty here is two fold. First, the processes
operate out of step with each other, so not all subsets of processes will expect the
same types of messages. Second, while under the proposed MPI 3.0 standard,
it is possible for processes to pre-post for asynchronous collective operations,
it is assumed that the processes know what to expect a head of time. In the
case of a general processing situation, it is unpredictable what the specifics of
the collective call would be rendering this ineffective for this situation. Instead,
to implement this functionality, a manual asynchronous broadcast must be im-
plemented. This problem is worse if the processing incorporates other collective
operations, such as all-to-all, gather, scatter, or all-reduce operations. None of
these pending operations can be detected through the use of an MPI Probe call.

4 Proposed Extensions

One possible solution to this scenario is relatively straightforward. The current
MPI Probe implementation could be expanded to include all of the collective



calls. While this maintains a simpler API, the additional possibilities for types
of messages and the change in the behavior that may affect current applications
makes this approach less than desirable. Instead, an identical pair of API calls,
MPI Cprobe and MPI Icprobe that look the same as the MPI Probe equivalents,
would be sufficient. In this case, instead of identifying pending point to point
messages, these calls would only detect all of the collective calls that the current
probe implementation supports. With this extension, it would be possible to
remove re-implentation of collective calls as point-to-point calls and associated
operations such as performing the all-reduce operation. Additionally, this would
afford potentially leveraging hardware features, such as the collectives network
on the BlueGene platform.

The potential performance impact of blocking many or even all processes
waiting for a collective call to complete is serious. It is certainly likely that
collectives were not included in MPI Probe for exactly this concern. However,
the introduction of asynchronous collective communication largely alleviates this
concern. The potential performance penalty of poorly written replacements for
the collective calls should outweigh these concerns. Their direct impact of these
calls on an MPI application’s performance will generally be limited. With suffi-
cient warnings about only using these calls as ways to detect collective calls will
cause all processes to stall until the corresponding collective calls are issued.

5 Conclusions

The move to exascale is motivating moving offline workflows online and coupling
the various components more tightly while maintaining separate applications to
enhance resilience. This communication and processing intensive software archi-
tecture requires the ability to both probe for new messages as well as communi-
cate among all of the processes within an application simultaneously. The ability
to probe for unexpected messages of all types rather than simply point-to-point
messages will enable MPI applications to more easily participate in this software
architecture. The inclusion of collective calls such as MPI Bcast both simplifies
the implementation as well as offers the performance advantage of efficient col-
lectives implementations offered by MPI and potentially the ability to leverage
hardware features such as dedicated collectives networks.

6 Acknowledgements

Sandia National Laboratories is a multi-program laboratory managed and op-
erated by Sandia Corporation, a wholly owned subsidiary of Lockheed Martin
Corporation, for the U.S. Department of Energy’s National Nuclear Security
Administration under contract DE-AC04-94AL85000.



References

[1] Docan, C., Parashar, M., Klasky, S.: DataSpaces: An interaction and coordination
framework for coupled simulation workflows. HPDC ’10: Proceedings of the 18th
international symposium on High performance distributed computing (2010)

[2] Droegemeier, K., Chandrasekar, V., Clark, R., Gannon, D., Graves, S., Joseph,
E., Ramamurthy, M., Wilhelmson, R., Brewster, K., Domenico, B., Leyton, T.,
Morris, V., Murray, D., Plale, B., Ramachandran, R., Reed, D., Rushing, J.,
Weber, D., Wilson, A., Xue, M., Yalda, S.: Linked environments for atmo-
spheric discovery (lead): A cyberinfrastructure for mesoscale meteorology re-
search and education. In: 20th Conf. on Interactive Information Processing Sys-
tems for Meteorology, Oceanography, and Hydrology. Seattle, WA (01/2004 2004),
http://www.cs.indiana.edu/dde/papers/droegemeierIIPS2004.pdf

[3] Jr., E.S.H., Bell, R.L., Elrick, M.G., Farnsworth, A.V., Kerley, G.I., McGlaun,
J.M., Petney, S.V., Silling, S.A., Taylor, P.A., Yarrington, L.: CTH: A
software family for multi-dimensional shock physics analysis. In: Brun, R.,
Dumitrescu, L. (eds.) Proceedings of the 19’th International Symposium
on Shock Physics. vol. 1, pp. 377–382. Marseille, France (July 1993),
http://sherpa.sandia.gov/9231home/pdfpapers/issw.pdf

[4] Ludäscher, B., Altintas, I., Berkley, C., Higgins, D., Jaeger, E., Jones, M., Lee,
E.A., Tao, J., Zhao, Y.: Scientific workflow management and the kepler system:
Research articles. Concurr. Comput. : Pract. Exper. 18(10), 1039–1065 (2006)

[5] Malewicz, G., Foster, I., Rosenberg, A., Wilde, M.: A tool for prioritizing DAG-
Man jobs and its evaluation. High Performance Distributed Computing, 2006 15th
IEEE International Symposium on pp. 156–168 (0-0 2006)

[6] Moreland, K., Lepage, D., Koller, D., Humphreys, G.: Remote rendering for
ultrascale data. Journal of Physics: Conference Series 125(1), 012096 (2008),
http://stacks.iop.org/1742-6596/125/i=1/a=012096

[7] Mullender, S.J., Leslie, I.M., McAuley, D.: Operating-system support for dis-
tributed multimedia. In: Proceedings of the 1994 Summer USENIX Technical
Conference. pp. 209–219 (1994)

[8] Oldfield, R.A., Widener, P., Maccabe, A.B., Ward, L., Kordenbrock, T.: Ef-
ficient data-movement for lightweight I/O. In: Proceedings of the 2006 In-
ternational Workshop on High Performance I/O Techniques and Deploy-
ment of Very Large Scale I/O Systems. Barcelona, Spain (September 2006),
http://doi.ieeecomputersociety.org/10.1109/CLUSTR.2006.311897

[9] Riedel, M., Eickermann, T., Habbinga, S., Frings, W., Gibbon, P., Mallmann, D.,
Wolf, F., Streit, A., Lippert, T., Schiffmann, W., Ernst, A., Spurzem, R., Nagel,
W.: Computational steering and online visualization of scientific applications on
large-scale hpc systems within e-science infrastructures. In: e-Science and Grid
Computing, IEEE International Conference on. pp. 483 –490 (dec 2007)

[10] UCAR: Local data manager, http://www.unidata.ucar.edu/software/ldm
[11] Wozniak, J.M., Latham, R., Lang, S., Son, S.W., Ross, R.: C-mpi: A dht imple-

mentation for grid and hpc environments. In: EuroMPI (2009)
[12] Zheng, F., Abbasi, H., Docan, C., Lofstead, J., Klasky, S., Liu, Q., Parashar, M.,

Podhorszki, N., Schwan, K., Wolf, M.: PreDatA - preparatory data analytics on
Peta-Scale machines. In: In Proceedings of 24th IEEE International Parallel and
Distributed Processing Symposium, April, Atlanta, Georgia (2010)


